Modeling and Evaluating Errors Due to Random Clock Shifts in Quantum-Dot Cellular Automata Circuits

نویسندگان

  • Faizal Karim
  • Marco Ottavi
  • Hamidreza Hashempour
  • Vamsi Vankamamidi
  • Konrad Walus
  • André Ivanov
  • Fabrizio Lombardi
چکیده

This paper analyzes the effect of random phase shifts in the underlying clock signals on the operation of several basic Quantum-dot Cellular Automata (QCA) building blocks. Such phase shifts can result from manufacturing variations or from uneven path lengths in the clocking network. We perform numerical simulations of basic building blocks using two different simulation engines available in the QCADesigner tool. We assume that the phase shifts are characterized by a Gaussian distribution with a mean value of i π2 , where i is the clock number and a standard deviation, σ , which is varied in each simulation. Our results indicate that the sensitivity of building blocks to phase shifts depends primarily on the layout while the reliability of all building blocks starts to drop once the standard deviation, σ exceeds 4◦. A full adder was simulated to analyze the operation of a circuit featuring a combination of the building blocks considered here. Results are consistent with expectations and demonstrate that the carry output of the full adder is better able to withstand the phase shifts in the clocking network than M. Ottavi is currently with Advanced Micro Devices Inc. This work done when the author was with the ECE Department of Northeastern University, Boston MA. V. Vankamamidi is currently with EMC Corporation. Responsible Editors: C. Bolchini and Y.-B. Kim F. Karim (B) · K. Walus · A. Ivanov Department of ECE, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 e-mail: [email protected] M. Ottavi · H. Hashempour · V. Vankamamidi · F. Lombardi Department of ECE, Northeastern University, Boston, MA 02115, USA the Sum output which features a larger combination of the simulated building blocks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of low power random number generators for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA.  Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...

متن کامل

Two Novel D-Flip Flops with Level Triggered Reset in Quantum Dot Cellular Automata Technology

Quantum dot cellular automata (QCA) introduces a pioneer technology in nano scale computer architectures. Employing this technology is one of the solutions to decrease the size of circuits and reducing power dissipation. In this paper, two new optimized FlipFlops with reset input are proposed in quantum dot cellular automata technology. In addition, comparison with related works is performed.Th...

متن کامل

Design of low power random number generators for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA.  Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...

متن کامل

Novel Phase-frequency Detector based on Quantum-dot Cellular Automata Nanotechnology

The electronic industry has grown vastly in recent years, and researchers are trying to minimize circuits delay, occupied area and power consumption as much as possible. In this regard, many technologies have been introduced. Quantum Cellular Automata (QCA) is one of the schemes to design nano-scale digital electronic circuits. This technology has high speed and low power consumption, and occup...

متن کامل

A Novel Design of a Multi-layer 2:4 Decoder using Quantum- Dot Cellular Automata

The quantum-dot cellular automata (QCA) is considered as an alternative tocomplementary metal oxide semiconductor (CMOS) technology based on physicalphenomena like Coulomb interaction to overcome the physical limitations of thistechnology. The decoder is one of the important components in digital circuits, whichcan be used in more comprehensive circuits such as full adde...

متن کامل

Introducing New Structures for D-Type Latch and Flip-Flop in Quantum-Dot Cellular Automata Technology and its Use in Phase-Frequency Detector, Frequency Divider and Counter Circuits

Quantum-dot cellular automata (QCA) technology is an alternative to overcoming the constraints of CMOS technology. In this paper, a new structure for D-type latch is presented in QCA technology with set and reset terminals. The proposed structure, despite having the set and reset terminals, has only 35 quantum cells, a delay equal to half a cycle of clocks and an occupied area of ​​39204 nm2. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Electronic Testing

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2009